Tags: algorithmic misc
Rating:
Construct a graph with intersections as vertices, and road as edges with weights.
Run Dijkstra'a Shortest Path Algorithm on it, storing the links and trace back to get the actual path.
Complexity $\mathcal{O}(n \log n)$
My C++ script
```cpp
#include<bits/stdc++.h>
using namespace std;
const int N = 200000;
vector<pair<int,int>> g[N];
string s[N];
int w[N];
int path[N];
int from[N];
int main() {
for (int i = 0; i < N; ++i) {
int u, v;
cin >> u >> v >> w[i] >> s[i];
--u, --v;
g[u].emplace_back(v, i);
g[v].emplace_back(u, i);
}
vector<long long> dis(N, (long long) 1e18);
dis[0] = 0;
set<pair<long long, int>> dij;
dij.emplace(0LL, 0);
while (!dij.empty()) {
auto [d, u] = *dij.begin();
dij.erase(dij.begin());
for (auto [v, i] : g[u]) {
long long nd = d + w[i];
if (nd < dis[v]) {
dij.erase({dis[v], v});
dis[v] = nd;
from[v] = u;
path[v] = i;
dij.insert({dis[v], v});
}
}
}
int u = N - 1;
vector<int> ord;
while (u != 0) {
ord.push_back(path[u]);
u = from[u];
}
reverse(ord.begin(), ord.end());
for (int i : ord) {
cout << s[i];
}
cout << endl;
}
```
You can see the flag, among other strings in the output
```txt
rgbCTF{1m_b4d_4t_sh0pp1ng}
```