Tags: polynomials
Rating:
Final Script:
```python
from Crypto.Util.number import *
import gmpy2
from sympy import divisors
n = 0xab802dca026b18251449baece42ba2162bf1f8f5dda60da5f8baef3e5dd49d155c1701a21c2bd5dfee142fd3a240f429878c8d4402f5c4c7f4bc630c74a4d263db3674669a18c9a7f5018c2f32cb4732acf448c95de86fcd6f312287cebff378125f12458932722ca2f1a891f319ec672da65ea03d0e74e7b601a04435598e2994423362ec605ef5968456970cb367f6b6e55f9d713d82f89aca0b633e7643ddb0ec263dc29f0946cfc28ccbf8e65c2da1b67b18a3fbc8cee3305a25841dfa31990f9aab219c85a2149e51dff2ab7e0989a50d988ca9ccdce34892eb27686fa985f96061620e6902e42bdd00d2768b14a9eb39b3feee51e80273d3d4255f6b19
e = 0x10001
c = 0x6a12d56e26e460f456102c83c68b5cf355b2e57d5b176b32658d07619ce8e542d927bbea12fb8f90d7a1922fe68077af0f3794bfd26e7d560031c7c9238198685ad9ef1ac1966da39936b33c7bb00bdb13bec27b23f87028e99fdea0fbee4df721fd487d491e9d3087e986a79106f9d6f5431522270200c5d545d19df446dee6baa3051be6332ad7e4e6f44260b1594ec8a588c0450bcc8f23abb0121bcabf7551fd0ec11cd61c55ea89ae5d9bcc91f46b39d84f808562a42bb87a8854373b234e71fe6688021672c271c22aad0887304f7dd2b5f77136271a571591c48f438e6f1c08ed65d0088da562e0d8ae2dadd1234e72a40141429f5746d2d41452d916
chunk_size , bits = 64 , 1024
a = 0xe64a5f84e2762be5
r = 2**chunk_size
first_half = n//(2**(2048-64)) - 1
second_half = inverse(a**30,r)*(n%r) %r
seed_product = first_half*r + second_half
def getprime(s):
p = 0
for _ in range(bits // chunk_size):
p = (p << chunk_size) + s
s = a * s % 2**chunk_size
return p if gmpy2.is_prime(p) else 0
candidates = divisors(seed_product)
for each in candidates:
s,t = each , seed_product//each
p,q = getprime(s),getprime(t)
if p*q == n:break
h = (p-1)*(q-1)
d = inverse(e,h)
print(long_to_bytes(pow(c,d,n)).decode())
```
[original writeup](https://saurav3199.github.io/CTF-writeups/GoogleCTF'20/)