Tags: crypto
Rating:
Writeup for solved challenge in DragonSectorCTF 2020
# **CRYPTO**
## Bit Flip I-:
> description:
Flip bits and decrypt communication between Bob and Alice.
`nc bitflip1.hackable.software 1337`
[task.tgz](assets/task.tgz)
```python
#!/usr/bin/python3
from Crypto.Util.number import bytes_to_long, long_to_bytes
from Crypto.Cipher import AES
import hashlib
import os
import base64
from gmpy2 import is_prime
FLAG = open("flag").read()
FLAG += (16 - (len(FLAG) % 16))*" "
class Rng:
def __init__(self, seed):
self.seed = seed
self.generated = b""
self.num = 0
def more_bytes(self):
self.generated += hashlib.sha256(self.seed).digest()
self.seed = long_to_bytes(bytes_to_long(self.seed) + 1, 32)
self.num += 256
def getbits(self, num=64):
while (self.num < num):
self.more_bytes()
x = bytes_to_long(self.generated)
self.num -= num
self.generated = b""
if self.num > 0:
self.generated = long_to_bytes(x >> num, self.num // 8)
return x & ((1 << num) - 1)
class DiffieHellman:
def gen_prime(self):
prime = self.rng.getbits(512)
iter = 0
while not is_prime(prime):
iter += 1
prime = self.rng.getbits(512)
print("Generated after", iter, "iterations")
return prime
def __init__(self, seed, prime=None):
self.rng = Rng(seed)
if prime is None:
prime = self.gen_prime()
self.prime = prime
self.my_secret = self.rng.getbits()
self.my_number = pow(5, self.my_secret, prime)
self.shared = 1337
def set_other(self, x):
self.shared ^= pow(x, self.my_secret, self.prime)
def pad32(x):
return (b"\x00"*32+x)[-32:]
def xor32(a, b):
return bytes(x^y for x, y in zip(pad32(a), pad32(b)))
def bit_flip(x):
print("bit-flip str:")
flip_str = base64.b64decode(input().strip())
return xor32(flip_str, x)
alice_seed = os.urandom(16)
while 1:
alice = DiffieHellman(bit_flip(alice_seed))
bob = DiffieHellman(os.urandom(16), alice.prime)
alice.set_other(bob.my_number)
print("bob number", bob.my_number)
bob.set_other(alice.my_number)
iv = os.urandom(16)
print(base64.b64encode(iv).decode())
cipher = AES.new(long_to_bytes(alice.shared, 16)[:16], AES.MODE_CBC, IV=iv)
enc_flag = cipher.encrypt(FLAG)
print(base64.b64encode(enc_flag).decode())
```
### Solution:
On analysing the challenge script we can deduce that [Diffie Hellman Key exchange](https://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange) was done by Bob with alice multiple times. We only have the control over bit-flip and as the challenge description suggested we have to make the use of it to get the alice seed (because recovering seed for Bob is not easy).
There's a strange piece of information was given to us in the form of number of iterations used to calculate prime.
Let's have a look over Rng as how prime was generated:
In getbits function, this block was never visited when 512 is sent to self.num:
```python
if self.num > 0:
self.generated = long_to_bytes(x >> num, self.num // 8)
```
thus allowing self.generated to be clean again for the next call . That's the flaw in the code which means prime for seed = i and i+2 will be same.
Manually testing the code:
```
seed = b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'
Generated after 83 iterations
prime = 3217336996812784199323541050098699361781489187527078355681535168764692913032949200158631425936108602790839091441050033248993143847385123136499734649619637
seed = b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02'
Generated after 82 iterations
prime = 3217336996812784199323541050098699361781489187527078355681535168764692913032949200158631425936108602790839091441050033248993143847385123136499734649619637
```
So if we flip the second last bit then it's 0 if the iteration count decreased otherwise 1.
The implementation for rest of the bytes are tricky and in the end we have to brute for the last byte as its either 0 or 1.
#### Implementation:
Suppose we find upto X'th bit , then we have to guess for `.....x10100b` (last bit is b and it's undecided)
we can have iteration count for `.....x00000b`
and
for `.....011111b` (by flipping the bits)
as the difference between them is 2 so we will have one less iteration count if the bit was 1 otherwise 0.
Solution [script](/solve.py):
In beginning we have to solve POW which is same as asked in [GoogleCTF'17](https://github.com/google/google-ctf/blob/master/2017/quals/2017-pwn-cfi/challenge/hashcash.py).
```python
from pwn import *
from base64 import *
from Crypto.Util.number import *
from Crypto.Cipher import AES
import subprocess
from task import Rng , DiffieHellman
def POW(r):
print("----------Solving POW-----------")
command = r.recv().strip().split(b": ")[-1]
hashed = subprocess.check_output(command,shell=True).strip()
r.sendline(hashed)
print("----------Solved----------------")
def sendloop(r,i: int):
r.recv()
a = b64encode(long_to_bytes(i,32))
r.sendline(a)
iters = int(r.recvline().strip().split(b" ")[2])
bob_number = int(r.recvline().strip().split(b" ")[-1]) # bob number
iv = b64decode(r.recvline().strip()) # IV
ciphertext = b64decode(r.recvline().strip()) # ciphertext
return iters,bob_number,iv,ciphertext
def get_flag(seed,bob_number,iv,ciphertext):
alice = DiffieHellman(long_to_bytes(int(seed,2)))
shared = pow(bob_number,alice.my_secret,alice.prime)
cipher = AES.new(long_to_bytes(shared,16)[:16] , AES.MODE_CBC , IV= iv)
flag = cipher.decrypt(ciphertext)
return flag
r = remote("bitflip1.hackable.software",1337)
POW(r)
bits = ""
for pos in range(1,128):
nums = 0 if bits=='' else int(bits,2)*2
flippedbit = 1<