Processing math: 100%

Rating:

RoHaLd

Challenge

There is always a starting point, isn't it?

RoHaLd_ECC.py

#!/usr/bin/env sage

from Crypto.Util.number import *
from secret import flag, Curve

def ison(C, P):
    c, d, p = C
    u, v = P
    return (u**2 + v**2 - c**2 * (1 + d * u**2*v**2)) % p == 0

def teal(C, P, Q):
    c, d, p = C
    u1, v1 = P
    u2, v2 = Q
    assert ison(C, P) and ison(C, Q)
    u3 = (u1 * v2 + v1 * u2) * inverse(c * (1 + d * u1 * u2 * v1 * v2), p) % p
    v3 = (v1 * v2 - u1 * u2) * inverse(c * (1 - d * u1 * u2 * v1 * v2), p) % p
    return (int(u3), int(v3))

def peam(C, P, m):
    assert ison(C, P)
    c, d, p = C
    B = bin(m)[2:]
    l = len(B)
    u, v = P
    PP = (-u, v)
    O = teal(C, P, PP)
    Q = O
    if m == 0:
        return O
    elif m == 1:
        return P
    else:
        for _ in range(l-1):
            P = teal(C, P, P)
        m = m - 2**(l-1)
        Q, P = P, (u, v)
        return teal(C, Q, peam(C, P, m))

c, d, p = Curve

flag = flag.lstrip(b'CCTF{').rstrip(b'}')
l = len(flag)
lflag, rflag = flag[:l // 2], flag[l // 2:]

s, t = bytes_to_long(lflag), bytes_to_long(rflag)
assert s < p and t < p

P = (398011447251267732058427934569710020713094, 548950454294712661054528329798266699762662)
Q = (139255151342889674616838168412769112246165, 649791718379009629228240558980851356197207)

print(f'ison(C, P) = {ison(Curve, P)}')
print(f'ison(C, Q) = {ison(Curve, Q)}')

print(f'P = {P}')
print(f'Q = {Q}')

print(f's * P = {peam(Curve, P, s)}')
print(f't * Q = {peam(Curve, Q, t)}')

output.txt

ison(C, P) = True
ison(C, Q) = True
P = (398011447251267732058427934569710020713094, 548950454294712661054528329798266699762662)
Q = (139255151342889674616838168412769112246165, 649791718379009629228240558980851356197207)
s * P = (730393937659426993430595540476247076383331, 461597565155009635099537158476419433012710)
t * Q = (500532897653416664117493978883484252869079, 620853965501593867437705135137758828401933)

The challenge is to solve the discrete log problem twice, given two pairs of points on the curve. However, before we can do this, we need to recover the curve parameters (c,d,p). The writeup is broken into two pieces: first the recovery of the paramters, then the mapping of the Edwards curve to Weierstrass form to easily solve the dlog using Sage.

Solution

Recovering Curve Parameters

Our goal in this section is to recover (c,d,p) so we can reconstruct the curve and solve the discrete log. We will obtain p first, which will allow us to take inversions mod p, needed to recover c,d.

We have the curve equation:

Ec,d:x2+y2=c2(1+dx2y2)(modp)

and so we know for any point (x0,y0) we have

x20+y20c2(1+dx20y20)=k0p0(modp)

for some integer k0.

Taking two points on the curve, we can isolate cd2 using:

X1=x21+y21c2(1+dx21y21)=k1p X2=x22+y22c2(1+dx22y22)=k2p

The goal is to use two points to write something which is a multiple of p, and to do this twice. We can then recover p from the gcd of the pair of points.

Taking the difference X1X2 elliminates the constant c2 term:

X1X2=(x21x22+y21y22)c2d(x21y21x22y22)0(modp)

Collecting the multiples of p we can isolate c2d , where we use the notation:

Aij=x2ix2j+y2iy2j,Bij=x2iy2ix2jy2j

to write down:

A12B12c2d(modp)

Doing this with the other pair of points gives another expression for c2d and the difference of these two expressions will be a multiple of p

A12B12A34B34=kp

There's one more problem: we can't divide without knowing p, so first let's remove the denominator:

A12B34A34B12=B12B34kp=˜kp

Finally, we can obtain p from taking another combination of points and taking the gcd

Y1234=A12B34A34B12=B12B34 Y1324=A13B24A24B13=B13B24 pgcd(Y1234,Y1324)

Note, we may not get exactly p , but some multiple of p, however, it's easy to factor this and find p precisely.

Returning to the above expression with the knowledge of p, we can compute c2d

c2d=x21x22+y21y22x21y21x22y22(modp)

and with this known, we can so back to any point on a curve and write

c2=x20+y20c2dx20y20(modp)

and c is then found with a square root and d can be found from c2d. With all curve parameters known, we can continue to solve the discrete log.

from math import gcd

def ison(C, P):
    """
    Verification points are on the curve
    """
    c, d, p = C
    u, v = P
    return (u**2 + v**2 - cc * (1 + d * u**2*v**2)) % p == 0

def a_and_b(u1,u2,v1,v2):
    """
    Helper function used to simplify calculations
    """
    a12 = u1**2 - u2**2 + v1**2 - v2**2
    b12 = u1**2 * v1**2 - u2**2 * v2**2
    return a12, b12

def find_modulus(u1,u2,u3,u4,v1,v2,v3,v4):
    """
    Compute the modulus from four points
    """
    a12, b12 = a_and_b(u1,u2,v1,v2)
    a13, b13 = a_and_b(u1,u3,v1,v3)
    a23, b23 = a_and_b(u2,u3,v2,v3)
    a24, b24 = a_and_b(u2,u4,v2,v4)

    p_almost = gcd(a12*b13 - a13*b12, a23*b24 - a24*b23)

    for i in range(2,1000):
        if p_almost % i == 0:
            p_almost = p_almost // i

    return p_almost

def c_sq_d(u1,u2,v1,v2,p):
    """
    Helper function to computer c^2 d
    """
    a1,b1 = a_and_b(u1,u2,v1,v2)
    return a1 * pow(b1,-1,p) % p

def c(u1,u2,v1,v2,p):
    """
    Compute c^2, d from two points and known modulus
    """
    ccd = c_sq_d(u1,u2,v1,v2,p)
    cc = (u1**2 + v1**2 - ccd*u1**2*v1**2) % p
    d = ccd * pow(cc, -1, p) % p
    return cc, d


P = (398011447251267732058427934569710020713094, 548950454294712661054528329798266699762662)
Q = (139255151342889674616838168412769112246165, 649791718379009629228240558980851356197207)
sP = (730393937659426993430595540476247076383331, 461597565155009635099537158476419433012710)
tQ = (500532897653416664117493978883484252869079, 620853965501593867437705135137758828401933)

u1, v1 = P
u2, v2 = Q
u3, v3 = sP
u4, v4 = tQ

p = find_modulus(u1,u2,u3,u4,v1,v2,v3,v4)
cc, d = c(u1,u2,v1,v2,p)

C = cc, d, p
assert ison(C, P)
assert ison(C, Q)
assert ison(C, sP)
assert ison(C, tQ)

print(f'Found curve parameters')
print(f'p = {p}')
print(f'c^2 = {cc}')
print(f'd = {d}')

# Found curve
# p = 903968861315877429495243431349919213155709
# cc = 495368774702871559312404847312353912297284
# d = 540431316779988345188678880301417602675534

Converting to Weierstrass Form

With the curve known, all we have to do is solve the discrete log problem on the Edwards curve. This could be done by using Pohlih-Hellman and BSGS using the functions defined in the file, but instead we map the Edwards curve into Weierstrass form and use sage in built dlog to solve. Potentially there is a smarter way to do this conversion, here I used known mappings to go from Edwards to Montgomery form, then Montgomery form to Weierstrass form. Please let me know if there's a smarter way to do this!

We begin with the Edwards curve:

Ec,d:x2+y2=c2(1+dx2y2)(modp)

This is in the less usual form, with the factor c, so before continuing, we scale (x,y,d) to remove c:

xxc,;;yyc,;;dc4d

To obtain the more familiar Edwards curve:

Ec:x2+y2=(1+dx2y2)(modp)

Note: I am refering to (x,y,d) using the same labels, I hope this doesnt confuse people.

In this more familiar form, I referred to https://safecurves.cr.yp.to/equation.html to map the curve to the Montgomery curve

EA,B:Bv2=u3+Au2+u(modp)

With the factor B here, I dont know how to create this curve using Sage, maybe this is possible? This mapping is done by the coordinate transformation

u=1+y1y,v=2(1+y)x(1y)=2ux

and the curve parameters are related by

A=41d2B=11d

Finally, we can convert this curve to short Weierstrass form (equations are taken from https://en.wikipedia.org/wiki/Montgomery_curve)

Ea,b:Y2=X3+aX2+b(modp)

My making the coordinate transformations

X=uB+A3B,Y=vB

and the curve parameters are related by

a=3A23B2b=2A39A27B3

In this form, we can plug the points into the curve using Sage and solve the discrete log. Implementation is given below

Grabbing the flag

from Crypto.Util.number import *

# Recovered from previous section
p = 903968861315877429495243431349919213155709
F = GF(p)
cc = 495368774702871559312404847312353912297284
c = F(cc).sqrt()
d = 540431316779988345188678880301417602675534

# Point data from challenge
P = (398011447251267732058427934569710020713094, 548950454294712661054528329798266699762662)
Q = (139255151342889674616838168412769112246165, 649791718379009629228240558980851356197207)
sP = (730393937659426993430595540476247076383331, 461597565155009635099537158476419433012710)
tQ = (500532897653416664117493978883484252869079, 620853965501593867437705135137758828401933)

x1, y1 = P
x2, y2 = Q
x3, y3 = sP
x4, y4 = tQ

R.<x,y> = PolynomialRing(F)
g = (x^2 + y^2 - cc * (1 + d * x^2*y^2))

# Check the mapping worked!
assert g(x=x1, y=y1) == 0
assert g(x=x2, y=y2) == 0
assert g(x=x3, y=y3) == 0
assert g(x=x4, y=y4) == 0

# Scale: x,y,d to remove c:
# x^2 + y^2 = c^2 * (1 + d * x^2*y^2)
# to:
# x^2 + y^2 = (1 + d * x^2*y^2)

d = F(d) * F(cc)^2
x1, y1 = F(x1) / F(c),  F(y1) / F(c)
x2, y2 = F(x2) / F(c),  F(y2) / F(c)
x3, y3 = F(x3) / F(c),  F(y3) / F(c)
x4, y4 = F(x4) / F(c),  F(y4) / F(c)

h = (x^2 + y^2 - (1 + d * x^2*y^2))

# Check the mapping worked!
assert h(x=x1, y=y1) == 0
assert h(x=x2, y=y2) == 0
assert h(x=x3, y=y3) == 0
assert h(x=x4, y=y4) == 0

# Convert from Edwards to Mont. 
# https://safecurves.cr.yp.to/equation.html
def ed_to_mont(x,y):
    u = F(1 + y) / F(1 - y)
    v = 2*F(1 + y) / F(x*(1 - y))
    return u,v

u1, v1 = ed_to_mont(x1, y1)
u2, v2 = ed_to_mont(x2, y2)
u3, v3 = ed_to_mont(x3, y3)
u4, v4 = ed_to_mont(x4, y4)

e_curve = 1 - F(d)
A = (4/e_curve - 2)
B = (1/e_curve)

# Mont. curve: Bv^2 = u^3 + Au^2 + u
R.<u,v> = PolynomialRing(ZZ)
f = B*v^2 - u^3 - A* u^2 - u

# Check the mapping worked!
assert f(u=u1, v=v1) == 0
assert f(u=u2, v=v2) == 0
assert f(u=u3, v=v3) == 0
assert f(u=u4, v=v4) == 0

# Convert from Mont. to Weierstrass
# https://en.wikipedia.org/wiki/Montgomery_curve
a = F(3 - A^2) / F(3*B^2)
b = (2*A^3 - 9*A) / F(27*B^3)
E = EllipticCurve(F, [a,b])

# https://en.wikipedia.org/wiki/Montgomery_curve
def mont_to_wei(u,v):
    t = (F(u) / F(B)) + (F(A) / F(3*B))
    s = (F(v) / F(B))
    return t,s

X1, Y1 = mont_to_wei(u1, v1)
X2, Y2 = mont_to_wei(u2, v2)
X3, Y3 = mont_to_wei(u3, v3)
X4, Y4 = mont_to_wei(u4, v4)

P = E(X1, Y1)
Q = E(X2, Y2)
sP = E(X3, Y3)
tQ = E(X4, Y4)

# Finally we can solve the dlog
s = P.discrete_log(sP)
t = Q.discrete_log(tQ)

# This should be the flag, but s is broken
print(long_to_bytes(s))
print(long_to_bytes(t))

# b'\x05\x9e\x92\xbfO\xdf1\x16\xb0>s\x93\xc6\xc7\xe7\xa3\x80\xf0'
# b'Ds_3LlipT!c_CURv3'

# We have to do this, as we picked the wrong square-root.
print(long_to_bytes(s % Q.order()))
print(long_to_bytes(t))

# b'nOt_50_3a5Y_Edw4r'
# b'Ds_3LlipT!c_CURv3'
Flag

CCTF{nOt_50_3a5Y_Edw4rDs_3LlipT!c_CURv3}

Wrong Root

When recovering the parameters we find:

# Recovered from previous section
p = 903968861315877429495243431349919213155709
F = GF(p)
cc = 495368774702871559312404847312353912297284
c = F(cc).sqrt()
d = 540431316779988345188678880301417602675534

however, there are two square roots to consider. By picking the wrong one, we introduce a minus sign in the scaling of the curves from Ea,c to Ea which creates an issue with the point we consider in EA,B. This can be fixed by instead working with

# Recovered from previous section
p = 903968861315877429495243431349919213155709
F = GF(p)
cc = 495368774702871559312404847312353912297284
c = F((-1 * F(cc).sqrt()))
d = 540431316779988345188678880301417602675534

which would mean we did not need to take the reduction mod Q.order()

Original writeup (https://blog.cryptohack.org/cryptoctf2021-hard#rohald).