Rating:
There is always a starting point, isn't it?
RoHaLd_ECC.py
#!/usr/bin/env sage
from Crypto.Util.number import *
from secret import flag, Curve
def ison(C, P):
c, d, p = C
u, v = P
return (u**2 + v**2 - c**2 * (1 + d * u**2*v**2)) % p == 0
def teal(C, P, Q):
c, d, p = C
u1, v1 = P
u2, v2 = Q
assert ison(C, P) and ison(C, Q)
u3 = (u1 * v2 + v1 * u2) * inverse(c * (1 + d * u1 * u2 * v1 * v2), p) % p
v3 = (v1 * v2 - u1 * u2) * inverse(c * (1 - d * u1 * u2 * v1 * v2), p) % p
return (int(u3), int(v3))
def peam(C, P, m):
assert ison(C, P)
c, d, p = C
B = bin(m)[2:]
l = len(B)
u, v = P
PP = (-u, v)
O = teal(C, P, PP)
Q = O
if m == 0:
return O
elif m == 1:
return P
else:
for _ in range(l-1):
P = teal(C, P, P)
m = m - 2**(l-1)
Q, P = P, (u, v)
return teal(C, Q, peam(C, P, m))
c, d, p = Curve
flag = flag.lstrip(b'CCTF{').rstrip(b'}')
l = len(flag)
lflag, rflag = flag[:l // 2], flag[l // 2:]
s, t = bytes_to_long(lflag), bytes_to_long(rflag)
assert s < p and t < p
P = (398011447251267732058427934569710020713094, 548950454294712661054528329798266699762662)
Q = (139255151342889674616838168412769112246165, 649791718379009629228240558980851356197207)
print(f'ison(C, P) = {ison(Curve, P)}')
print(f'ison(C, Q) = {ison(Curve, Q)}')
print(f'P = {P}')
print(f'Q = {Q}')
print(f's * P = {peam(Curve, P, s)}')
print(f't * Q = {peam(Curve, Q, t)}')
output.txt
ison(C, P) = True
ison(C, Q) = True
P = (398011447251267732058427934569710020713094, 548950454294712661054528329798266699762662)
Q = (139255151342889674616838168412769112246165, 649791718379009629228240558980851356197207)
s * P = (730393937659426993430595540476247076383331, 461597565155009635099537158476419433012710)
t * Q = (500532897653416664117493978883484252869079, 620853965501593867437705135137758828401933)
The challenge is to solve the discrete log problem twice, given two pairs of points on the curve. However, before we can do this, we need to recover the curve parameters (c,d,p). The writeup is broken into two pieces: first the recovery of the paramters, then the mapping of the Edwards curve to Weierstrass form to easily solve the dlog using Sage.
Our goal in this section is to recover (c,d,p) so we can reconstruct the curve and solve the discrete log. We will obtain p first, which will allow us to take inversions mod p, needed to recover c,d.
We have the curve equation:
Ec,d:x2+y2=c2(1+dx2y2)(modp)
and so we know for any point (x0,y0) we have
x20+y20−c2(1+dx20y20)=k0p≡0(modp)
for some integer k0.
Taking two points on the curve, we can isolate cd2 using:
X1=x21+y21−c2(1+dx21y21)=k1p X2=x22+y22−c2(1+dx22y22)=k2p
The goal is to use two points to write something which is a multiple of p, and to do this twice. We can then recover p from the gcd of the pair of points.
Taking the difference X1−X2 elliminates the constant c2 term:
X1−X2=(x21−x22+y21−y22)−c2d(x21y21−x22y22)≡0(modp)
Collecting the multiples of p we can isolate c2d , where we use the notation:
Aij=x2i−x2j+y2i−y2j,Bij=x2iy2i−x2jy2j
to write down:
A12B12≡c2d(modp)
Doing this with the other pair of points gives another expression for c2d and the difference of these two expressions will be a multiple of p
A12B12−A34B34=k⋅p
There's one more problem: we can't divide without knowing p, so first let's remove the denominator:
A12B34−A34B12=B12B34kp=˜kp
Finally, we can obtain p from taking another combination of points and taking the gcd
Y1234=A12B34−A34B12=B12B34 Y1324=A13B24−A24B13=B13B24 p≃gcd(Y1234,Y1324)
Note, we may not get exactly p , but some multiple of p, however, it's easy to factor this and find p precisely.
Returning to the above expression with the knowledge of p, we can compute c2d
c2d=x21−x22+y21−y22x21y21−x22y22(modp)
and with this known, we can so back to any point on a curve and write
c2=x20+y20−c2dx20y20(modp)
and c is then found with a square root and d can be found from c2d. With all curve parameters known, we can continue to solve the discrete log.
from math import gcd
def ison(C, P):
"""
Verification points are on the curve
"""
c, d, p = C
u, v = P
return (u**2 + v**2 - cc * (1 + d * u**2*v**2)) % p == 0
def a_and_b(u1,u2,v1,v2):
"""
Helper function used to simplify calculations
"""
a12 = u1**2 - u2**2 + v1**2 - v2**2
b12 = u1**2 * v1**2 - u2**2 * v2**2
return a12, b12
def find_modulus(u1,u2,u3,u4,v1,v2,v3,v4):
"""
Compute the modulus from four points
"""
a12, b12 = a_and_b(u1,u2,v1,v2)
a13, b13 = a_and_b(u1,u3,v1,v3)
a23, b23 = a_and_b(u2,u3,v2,v3)
a24, b24 = a_and_b(u2,u4,v2,v4)
p_almost = gcd(a12*b13 - a13*b12, a23*b24 - a24*b23)
for i in range(2,1000):
if p_almost % i == 0:
p_almost = p_almost // i
return p_almost
def c_sq_d(u1,u2,v1,v2,p):
"""
Helper function to computer c^2 d
"""
a1,b1 = a_and_b(u1,u2,v1,v2)
return a1 * pow(b1,-1,p) % p
def c(u1,u2,v1,v2,p):
"""
Compute c^2, d from two points and known modulus
"""
ccd = c_sq_d(u1,u2,v1,v2,p)
cc = (u1**2 + v1**2 - ccd*u1**2*v1**2) % p
d = ccd * pow(cc, -1, p) % p
return cc, d
P = (398011447251267732058427934569710020713094, 548950454294712661054528329798266699762662)
Q = (139255151342889674616838168412769112246165, 649791718379009629228240558980851356197207)
sP = (730393937659426993430595540476247076383331, 461597565155009635099537158476419433012710)
tQ = (500532897653416664117493978883484252869079, 620853965501593867437705135137758828401933)
u1, v1 = P
u2, v2 = Q
u3, v3 = sP
u4, v4 = tQ
p = find_modulus(u1,u2,u3,u4,v1,v2,v3,v4)
cc, d = c(u1,u2,v1,v2,p)
C = cc, d, p
assert ison(C, P)
assert ison(C, Q)
assert ison(C, sP)
assert ison(C, tQ)
print(f'Found curve parameters')
print(f'p = {p}')
print(f'c^2 = {cc}')
print(f'd = {d}')
# Found curve
# p = 903968861315877429495243431349919213155709
# cc = 495368774702871559312404847312353912297284
# d = 540431316779988345188678880301417602675534
With the curve known, all we have to do is solve the discrete log problem on the Edwards curve. This could be done by using Pohlih-Hellman and BSGS using the functions defined in the file, but instead we map the Edwards curve into Weierstrass form and use sage in built dlog to solve. Potentially there is a smarter way to do this conversion, here I used known mappings to go from Edwards to Montgomery form, then Montgomery form to Weierstrass form. Please let me know if there's a smarter way to do this!
We begin with the Edwards curve:
Ec,d:x2+y2=c2(1+dx2y2)(modp)
This is in the less usual form, with the factor c, so before continuing, we scale (x,y,d) to remove c:
x→xc,;;y→yc,;;d→c4d
To obtain the more familiar Edwards curve:
Ec:x2+y2=(1+dx2y2)(modp)
Note: I am refering to (x,y,d) using the same labels, I hope this doesnt confuse people.
In this more familiar form, I referred to https://safecurves.cr.yp.to/equation.html to map the curve to the Montgomery curve
EA,B:Bv2=u3+Au2+u(modp)
With the factor B here, I dont know how to create this curve using Sage, maybe this is possible? This mapping is done by the coordinate transformation
u=1+y1−y,v=2(1+y)x(1−y)=2ux
and the curve parameters are related by
A=41−d−2B=11−d
Finally, we can convert this curve to short Weierstrass form (equations are taken from https://en.wikipedia.org/wiki/Montgomery_curve)
Ea,b:Y2=X3+aX2+b(modp)
My making the coordinate transformations
X=uB+A3B,Y=vB
and the curve parameters are related by
a=3−A23B2b=2A3−9A27B3
In this form, we can plug the points into the curve using Sage and solve the discrete log. Implementation is given below
from Crypto.Util.number import *
# Recovered from previous section
p = 903968861315877429495243431349919213155709
F = GF(p)
cc = 495368774702871559312404847312353912297284
c = F(cc).sqrt()
d = 540431316779988345188678880301417602675534
# Point data from challenge
P = (398011447251267732058427934569710020713094, 548950454294712661054528329798266699762662)
Q = (139255151342889674616838168412769112246165, 649791718379009629228240558980851356197207)
sP = (730393937659426993430595540476247076383331, 461597565155009635099537158476419433012710)
tQ = (500532897653416664117493978883484252869079, 620853965501593867437705135137758828401933)
x1, y1 = P
x2, y2 = Q
x3, y3 = sP
x4, y4 = tQ
R.<x,y> = PolynomialRing(F)
g = (x^2 + y^2 - cc * (1 + d * x^2*y^2))
# Check the mapping worked!
assert g(x=x1, y=y1) == 0
assert g(x=x2, y=y2) == 0
assert g(x=x3, y=y3) == 0
assert g(x=x4, y=y4) == 0
# Scale: x,y,d to remove c:
# x^2 + y^2 = c^2 * (1 + d * x^2*y^2)
# to:
# x^2 + y^2 = (1 + d * x^2*y^2)
d = F(d) * F(cc)^2
x1, y1 = F(x1) / F(c), F(y1) / F(c)
x2, y2 = F(x2) / F(c), F(y2) / F(c)
x3, y3 = F(x3) / F(c), F(y3) / F(c)
x4, y4 = F(x4) / F(c), F(y4) / F(c)
h = (x^2 + y^2 - (1 + d * x^2*y^2))
# Check the mapping worked!
assert h(x=x1, y=y1) == 0
assert h(x=x2, y=y2) == 0
assert h(x=x3, y=y3) == 0
assert h(x=x4, y=y4) == 0
# Convert from Edwards to Mont.
# https://safecurves.cr.yp.to/equation.html
def ed_to_mont(x,y):
u = F(1 + y) / F(1 - y)
v = 2*F(1 + y) / F(x*(1 - y))
return u,v
u1, v1 = ed_to_mont(x1, y1)
u2, v2 = ed_to_mont(x2, y2)
u3, v3 = ed_to_mont(x3, y3)
u4, v4 = ed_to_mont(x4, y4)
e_curve = 1 - F(d)
A = (4/e_curve - 2)
B = (1/e_curve)
# Mont. curve: Bv^2 = u^3 + Au^2 + u
R.<u,v> = PolynomialRing(ZZ)
f = B*v^2 - u^3 - A* u^2 - u
# Check the mapping worked!
assert f(u=u1, v=v1) == 0
assert f(u=u2, v=v2) == 0
assert f(u=u3, v=v3) == 0
assert f(u=u4, v=v4) == 0
# Convert from Mont. to Weierstrass
# https://en.wikipedia.org/wiki/Montgomery_curve
a = F(3 - A^2) / F(3*B^2)
b = (2*A^3 - 9*A) / F(27*B^3)
E = EllipticCurve(F, [a,b])
# https://en.wikipedia.org/wiki/Montgomery_curve
def mont_to_wei(u,v):
t = (F(u) / F(B)) + (F(A) / F(3*B))
s = (F(v) / F(B))
return t,s
X1, Y1 = mont_to_wei(u1, v1)
X2, Y2 = mont_to_wei(u2, v2)
X3, Y3 = mont_to_wei(u3, v3)
X4, Y4 = mont_to_wei(u4, v4)
P = E(X1, Y1)
Q = E(X2, Y2)
sP = E(X3, Y3)
tQ = E(X4, Y4)
# Finally we can solve the dlog
s = P.discrete_log(sP)
t = Q.discrete_log(tQ)
# This should be the flag, but s is broken
print(long_to_bytes(s))
print(long_to_bytes(t))
# b'\x05\x9e\x92\xbfO\xdf1\x16\xb0>s\x93\xc6\xc7\xe7\xa3\x80\xf0'
# b'Ds_3LlipT!c_CURv3'
# We have to do this, as we picked the wrong square-root.
print(long_to_bytes(s % Q.order()))
print(long_to_bytes(t))
# b'nOt_50_3a5Y_Edw4r'
# b'Ds_3LlipT!c_CURv3'
CCTF{nOt_50_3a5Y_Edw4rDs_3LlipT!c_CURv3}
When recovering the parameters we find:
# Recovered from previous section
p = 903968861315877429495243431349919213155709
F = GF(p)
cc = 495368774702871559312404847312353912297284
c = F(cc).sqrt()
d = 540431316779988345188678880301417602675534
however, there are two square roots to consider. By picking the wrong one, we introduce a minus sign in the scaling of the curves from Ea,c to Ea which creates an issue with the point we consider in EA,B. This can be fixed by instead working with
# Recovered from previous section
p = 903968861315877429495243431349919213155709
F = GF(p)
cc = 495368774702871559312404847312353912297284
c = F((-1 * F(cc).sqrt()))
d = 540431316779988345188678880301417602675534
which would mean we did not need to take the reduction mod Q.order()