Tags: rsa

Rating:

We were given n which is a prime(instead it should be p*q in RSA).So here to find d we just need to find modinv of e and n-1(in usual RSA it would be e and (p-1)*(q-1))


-----BEGIN PUBLIC KEY-----
MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEBITsFfW/evEUntbdCGsHp
PM/+p2xPCHSZHPP6zw6rnvZGohg5ggtNZTqRa2jyWOnT98K6BU5K8F8+TWGz3nct
KtIziw6ubqCPIHbk5LCKsgkg+miF5sRN7BvuKKh2U8dLy56fEpTeiki9YUZSo9ZZ
3857iURhDyW/r5NumlQWfE0ifRbTLmXqRYtp1g3s1/oDTBs72GJxcWTneF6wbcxb
iLqiYuQxIOVGZcDLyz6tUbCgCBm06R1IctP753JOA6txvK+LuEx03slqrfyxhlOo
8FOT1mYGmSO8e5sxNj1tbZtFn0bbW6+W+EBKrxqDHw24qtfZOkJW6BVrK3B1egEg
kwIDAQAB
-----END PUBLIC KEY-----

The script below can get plaintext from cipher text.
 python
from base64 import b64decode

from Crypto.PublicKey import RSA
# https://stackoverflow.com/questions/4798654/modular-multiplicative-inverse-function-in-python
def egcd(a, b):
if a == 0:
return (b, 0, 1)
else:
g, y, x = egcd(b % a, a)
return (g, x - (b // a) * y, y)

def modinv(a, m):
g, x, y = egcd(a, m)
if g != 1:
raise Exception('modular inverse does not exist')
else:
return x % m

f = open("public.pem")
g = open("flag.enc")